
Friday November 8 Lecture Notes

1 Projective Modules

A universal property characterization of free modules:

Proposition Let F be a free R modules and let B be a base for F . Suppose
i : B → F is the inclusion map. Let M be any R module and let f : B → M
be any function, then there exists unique g (R module homomorphism) s.t.

F
g

  
B

i

OO

f
// M

commutes.

Definition An R module P is projective if for all surjective R module homo-
morphisms p : A → B and all R module homomorphisms h : P → B, there
exists a unique g s.t.

P
g

��
h
��

A
p // B // 0

commutes.

Proposition Free modules are projective.

Proof Let F be a free module with base B = {bi : i ∈ I}. Suppose we have
R module homomorphisms p : A → C (surjective) and h : F → C. Since p is
surjective, for each i ∈ I, there is ai ∈ A s.t. p(ai) = h(bi). By freeness, there
exists g : F → A with bi 7→ ai.

Definition A functor T : R-mod → GrpAbel is exact if whenever 0 → A
i−→

B
p−→ C → 0 is exact, then 0→ T (A)

Ti−→ T (B)
Tp−→ T (C)→ 0 is exact.

Proposition An R module P is projective iff HomR(P, ) is exact.
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Proof Take an exact sequence 0→ A
i−→ B

p−→ C → 0 (regardless of the assump-

tion on P , 0 = HomR(P, 0)→ HomR(P,A)
i∗−→ HomR(P,B)

p∗−→ HomR(P,C) is
exact). Note that ker i∗ = {f ∈ HomR(P,A) : if = 0} = {f ∈ HomR(P,A) :
f(P ) ⊆ ker i} = 0. Now, ker p∗ = {g ∈ HomR(P,B) : pg = 0} = {g ∈
HomR(P,B) : g(P ) ⊆ ker p} = {g ∈ HomR(P,B) : g(P ) ⊆ im i}, but i is in-
jective, so for all q ∈ P , there exists a unique aq ∈ A s.t. g(q) = i(aq), so
define h ∈ HomR(P,A) by h(q) = ap. We can check that this is a module map
homomorphism, and that ih = g, so ker p∗ = im i∗. Suppose P is projective.
Given h : P → C, by projective there is g s.t.

P

g

��

h

��
0 // A

i
// B

p
// C // 0

commutes. So h = pg = p∗g, and thus p∗ is onto, so HomR(P, ) is exact.

Suppose HomR(P, ) is exact. if p : B → C is a surjection, then 0→ ker p→
B

p−→ C → 0 is exact. So P∗ is surjective, and given h : P → C, there is g with
p∗g = h, i.e.,

P
g

��
h
��

B
p
// C // 0

commutes. So p is projective.

Proposition Let P be an R module. Then P be projective iff every short exact

sequence 0→ A
i−→ B

p−→ C → 0 splits.

Proof Assume P is projective. Then there exists j s.t.

P
j

��
1P
��

B
p
// P // 0

commutes, but pj = 1P , so j is the splitting map. Now suppose every short
exact sequence of the given form splits. Take a surjection q : B → C and
f : P → C, and consider

D

πB

��

πP // P

f

��
B

q
// C // 0
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where D = {(b, p) : b ∈ B, p ∈ P, q(b) = f(p)} is an R module and it has two
coordinate projections πB and πP (as it turns out, this is a categorical pullback).
Surjectivity of q implies that for any p ∈ P , there is b s.t. q(b) = f(p), so πP is

surjective, and 0→ kerπP → D
πP−−→ P → 0 splits by hypothesis, by h : P → D,

say, s.t.

D

πB

��

πP // P
h
oo

f

��
B

q
// C // 0

commutes. So πBh shows that p is projective.

Proposition An R module P is projective iff P is a direct summand of a free
module.

Proof Suppose P is projective. Every module is a quotient of a free module,
so, in particular, there is some surjection g : F → P where F is free. So
0→ ker g → F → P → 0 is exact, so it splits, and F ' P ⊕ ker g. Assume P is
a direct summand of a free module F . Then, we have a surjection g : F → P
and j : P → F , and gj = 1P . Suppose there is a surjection q : B → C and a
map f : P → C s.t.

F
g // P
j

oo

f

��
B

q
// C // 0

commutes. Since F is free, it is projective, and so there is h s.t.

F

h

��
fg

��
B

q
// C // 0

commutes, and thus hj satisfies the definition of projectivity for P .

e.g. Take R = Z/6Z = {0, 1, 2, 3, 4, 5}, and let I = {0, 3} and J = {0, 2, 4} be
ideals of R. Then R = I ⊕ J , but neither I, nor J are free as R modules, but
they are projective.

2 Chain Complexes

Definition Let M be an R module. A projective resolution of M is an exact
sequence · · · → P2 → P1 → P0 → M → 0, where P0, P1, . . . are projective
modules. A projective resolution is a free resolution if P0, P1, . . . are free.
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Proposition Every module M has a free resolution.

Proof Choose a spanning set of M , and let F0 be the free module on this set.
Consider 0→ ker ε0 → F0

ε0−→M → 0, where ε0 takes the spanning set to itself.
Also, 0→ ker ε1 → F1

ε1−→ ker ε0 → 0, and

0 // ker ε1 // F1

q1 ""

d1 // F0
// M // 0

ker ε0

OO .

Then im d1 = im ε1 = ker ε0, which proves exactness. Moreover, ker d1 = ker ε1,
which also proves exactness. Continue this process to obtain a free resolution.

Definition A chain complex C• (or (C•, d•)) is a sequence of modules and maps

for n ∈ Z, · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ · · · , in which dndn+1 = 0.

Here, dn is called differentiation.

Note: dndn+1 = 0 iff im dn+1 ⊆ ker dn

e.g. An exact sequence, infinite in both directions, is a chain complex.

e.g. · · · → 0→ 0→ 0→ · · · (the zero complex 0•)

e.g. An exact sequence which ends with 0 can be extended: · · · → 0 → 0 →
0→ · · ·

e.g. Let C• = · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ · · · be a chain complex,

and let F : R-mod→ R-mod be a functor with the additive property: F (f+g) =
F (f) + F (g) for morphism f and g. Then

F (C•) = · · · → F (Cn+1)
F (dn+1)−−−−−→ F (Cn)

F (dn)−−−−→ F (Cn−1)
F (dn−1)−−−−−→ · · ·

is a chain complex because the additive property implies that F (f+0) = F (f)+
F (0) = F (f), i.e., F (0) = 0 = F (dndn+1) = F (dn)F (dn+1) (since F is a
functor).

Note: F (C•) may not be exact even if C• is exact.

Definition If (C•, d•) is a chain complex, then n-cycles, Zn(C•) = ker dn ⊆ Cn,
and n-boundaries Bn(C•) = im dn+1 ⊆ Cn.

Note: im dn+1 ⊆ ker dn, so Bn(C•) ⊆ Zn(C•).

Definition If C• is a chain complex, then the nth homologyHn(C•) = Zn(C•)/Bn(C•).
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Note: We can make a category of chain complexes. The objects will be chain
complexes of R modules, and the morphism will be chain maps. For each n ∈ Z,
Hn is a functor from chain complexes to R modules.

We saw what Hn does on objects, but what about the morphisms?

Given

· · · // Cn+1

fn+1

��

dn+1 // Cn

fn

��

dn // Cn−1

fn−1

��

// · · ·

· · · // C ′n+1

d′n+1 // C ′n
d′n // C ′n−1 // · · ·

we defineHn(f•) : Hn(C•)→ Hn(C ′•) iffHn(f•) = Zn(C•)/Bn(C•)→ Zn(C ′•)/Bn(C ′•)
by zn +Bn(C•) 7→ fn(zn) +Bn(C ′•).
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