Friday November 8 Lecture Notes

1 Projective Modules

A universal property characterization of free modules:
Proposition Let F' be a free R modules and let B be a base for F. Suppose

i : B — I is the inclusion map. Let M be any R module and let f: B — M
be any function, then there exists unique g (R module homomorphism) s.t.
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commutes.
Definition An R module P is projective if for all surjective R module homo-

morphisms p : A — B and all R module homomorphisms h : P — B, there
exists a unique g s.t.

commutes.

Proposition Free modules are projective.

Proof Let F' be a free module with base B = {b; : i € I}. Suppose we have
R module homomorphisms p : A — C (surjective) and h : F' — C. Since p is
surjective, for each i € I, there is a; € A s.t. p(a;) = h(b;). By freeness, there

exists g : F — A with b; — a;.

Definition A functor T' : R-mod — Grpyye is exact if whenever 0 — A 4
B2 C — 0 is exact, then 0 — T(A) EAN T(B) Ir, T(C) — 0 is exact.

Proposition An R module P is projective iff Homg(P, ) is exact.



Proof Take an exact sequence 0 - A — B % C' — 0 (regardless of the assump-
tion on P, 0 = Homp(P,0) — Hompg(P, A) = Homg(P, B) X% Homg(P,C) is
exact). Note that keri, = {f € Homg(P, A) : if = 0} = {f € Hompg(P, A) :
f(P) C keri} = 0. Now, kerp, = {g € Homg(P,B) : pg = 0} = {g €
Hompg(P, B) : g(P) C kerp} = {¢g € Homg(P, B) : g(P) C im3}, but ¢ is in-
jective, so for all ¢ € P, there exists a unique a, € A s.t. g(q) = i(aq), so
define h € Hompg (P, A) by h(q) = a,. We can check that this is a module map
homomorphism, and that ih = g, so ker p, = imi,. Suppose P is projective.
Given h : P — C, by projective there is g s.t.
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commutes. So h = pg = p.g, and thus p, is onto, so Hompg (P, ) is exact.

Suppose Hompg (P, _) is exact. if p: B — C is a surjection, then 0 — ker p —
B % € — 0 is exact. So P, is surjective, and given h : P — C, there is g with

P«g = h’u i’e’v
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commutes. So p is projective.

Proposition Let P be an R module. Then P be projective iff every short exact
sequence 0 — A = B & € — 0 splits.

Proof Assume P is projective. Then there exists j s.t.
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commutes, but pj = 1p, so j is the splitting map. Now suppose every short
exact sequence of the given form splits. Take a surjection ¢ : B — C and
f P — C, and consider
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where D = {(b,p) : b € B,p € P,q(b) = f(p)} is an R module and it has two
coordinate projections 75 and 7p (as it turns out, this is a categorical pullback).
Surjectivity of ¢ implies that for any p € P, there is b s.t. ¢(b) = f(p), so 7p is
surjective, and 0 — ker mp — D =25 P — 0 splits by hypothesis, by h: P — D,
say, s.t.
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commutes. So mph shows that p is projective.

Proposition An R module P is projective iff P is a direct summand of a free
module.

Proof Suppose P is projective. Every module is a quotient of a free module,
80, in particular, there is some surjection g : F — P where F' is free. So
0 — kerg —» F — P — 0 is exact, so it splits, and F' ~ P @ ker g. Assume P is
a direct summand of a free module F. Then, we have a surjection g : F' — P
and j: P — F, and gj = 1p. Suppose there is a surjection ¢ : B — C and a
map f: P — C s.t.
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commutes. Since F' is free, it is projective, and so there is h s.t.
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commutes, and thus hj satisfies the definition of projectivity for P.

e.g. Take R =7Z/6Z = {0,1,2,3,4,5}, and let I = {0,3} and J = {0,2,4} be
ideals of R. Then R = I & J, but neither I, nor J are free as R modules, but
they are projective.

2 Chain Complexes
Definition Let M be an R module. A projective resolution of M is an exact

sequence -+ — Po» — P, - Py — M — 0, where Py, P;,... are projective
modules. A projective resolution is a free resolution if Py, P, ... are free.



Proposition Every module M has a free resolution.

Proof Choose a spanning set of M, and let Fjy be the free module on this set.
Consider 0 — kereg — Fy % M — 0, where g takes the spanning set to itself.
Also, 0 — kere; — Fy =5 kereg — 0, and

0 ker &, F—"5F M 0.
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ker gg

Then imd; = ime; = ker g, which proves exactness. Moreover, ker d; = kerey,
which also proves exactness. Continue this process to obtain a free resolution.

Definition A chain complex C, (or (Ce,d,)) is a sequence of modules and maps

dp, dn dp — . .
forneZ, - — Chy1 RAL NS Ne ML -+, in which d,,d,4+1 = 0.

Here, d,, is called differentiation.
Note: dndnp+1 =0 iff imd, 1 C kerd,

e.g. An exact sequence, infinite in both directions, is a chain complex.

eg -++—=>0—=0—0—-- (the zero complex 0,)

e.g. An exact sequence which ends with 0 can be extended: --- - 0 — 0 —
dn+t1 dn dpn—1 .

eg. Let Cqg =+ > Cpy1 — C, — C,,_1 —— --- be a chain complex,

and let F': R-mod — R-mod be a functor with the additive property: F(f+g) =
F(f)+ F(g) for morphism f and g. Then

F(dn+1) F(d""_l) .

F(C) = — F(Cpsr) F(Cy) 29 e,y

is a chain complex because the additive property implies that F'(f+0) = F(f)+
F(0) = F(f), ie, F(0) = 0 = F(dndn+1) = F(dp)F(dpt1) (since F is a
functor).

Note: F'(C,) may not be exact even if C, is exact.

Definition If (C,, d, ) is a chain complex, then n-cycles, Z,(Cs) = kerd,, C C,,
and n-boundaries B, (C,) = imd,+1 C C,,.

Note: imd, 11 C kerd,, so B,(Cs) C Z,(C,).

Definition If C, is a chain complex, then the nth homology H,,(C,) = Z,,(Cs) /B, (C,).



Note: We can make a category of chain complexes. The objects will be chain
complexes of R modules, and the morphism will be chain maps. For each n € Z,
H,, is a functor from chain complexes to R modules.

We saw what H,, does on objects, but what about the morphisms?

Given
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we define Hn(fo) : Hn(Co) — Hn(ci) iHH7z(fo) = Zn(CO)/B"(C') - Z”(O:)/B”(C:)
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